Mating-Induced Transcriptome Changes in the Reproductive Tract of Female Aedes aegypti

نویسندگان

  • Catalina Alfonso-Parra
  • Yasir H. Ahmed-Braimah
  • Ethan C. Degner
  • Frank W. Avila
  • Susan M. Villarreal
  • Jeffrey A. Pleiss
  • Mariana F. Wolfner
  • Laura C. Harrington
  • Mark Quentin Benedict
چکیده

The Aedes aegypti mosquito is a significant public health threat, as it is the main vector of dengue and chikungunya viruses. Disease control efforts could be enhanced through reproductive manipulation of these vectors. Previous work has revealed a relationship between male seminal fluid proteins transferred to females during mating and female post-mating physiology and behavior. To better understand this interplay, we used short-read RNA sequencing to identify gene expression changes in the lower reproductive tract of females in response to mating. We characterized mRNA expression in virgin and mated females at 0, 6 and 24 hours post-mating (hpm) and identified 364 differentially abundant transcripts between mating status groups. Surprisingly, 60 transcripts were more abundant at 0 hpm compared to virgin females, suggesting transfer from males. Twenty of these encode known Ae. aegypti seminal fluid proteins. Transfer and detection of male accessory gland-derived mRNA in females at 0 hpm was confirmed by measurement of eGFP mRNA in females mated to eGFP-expressing males. In addition, 150 transcripts were up-regulated at 6 hpm and 24 hpm, while 130 transcripts were down-regulated at 6 hpm and 24 hpm. Gene Ontology (GO) enrichment analysis revealed that proteases, a protein class broadly known to play important roles in reproduction, were among the most enriched protein classes. RNAs associated with immune system and antimicrobial function were also up-regulated at 24 hpm. Collectively, our results suggest that copulation initiates broad transcriptome changes across the mosquito female reproductive tract, "priming" her for important subsequent processes of blood feeding, egg development and immune defense. Our transcriptome analysis provides a vital foundation for future studies of the consequences of mating on female biology and will aid studies seeking to identify specific gene families, molecules and pathways that support key reproductive processes in the female mosquito.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reproductive isolation between Florida strains of Aedes aegypti and Aedes albopictus.

The dynamics of heterospecific and conspecific mating between Florida strains of Aedes aegypti and Aedes albopictus was examined. In nonchoice experiments where conspecific males were not available, dissection of the spermathecae showed that heterospecific insemination was an infrequent event for both species combinations (10.6% for Ae. albopictus with Ae. aegypti males, 3.6% for the reciprocal...

متن کامل

Cross-mating between Malaysian strains of Aedes aegypti and Aedes albopictus in the laboratory.

Reciprocal and homologous mating experiments between Malaysian Aedes aegypti and Aedes albopictus mosquitoes were conducted in the laboratory. Two methods were employed, namely an artificial mating technique and a natural cage mating technique. The study demonstrated there exists a strong reproductive isolation between Ae. aegypti and Ae. albopictus. Insemination occurred in cross-mating experi...

متن کامل

Satyrization without evidence of successful insemination from interspecific mating between invasive mosquitoes.

Previous research has documented low frequencies of interspecific mating in nature between the invasive vectors Aedes aegypti and Aedes albopictus. It is also known that heterospecific male accessory gland substances transferred during mating sterilize A. aegypti but not A. albopictus females, leading to satyrization, a form of reproductive interference. This paper demonstrates that satyrizatio...

متن کامل

Mating competitiveness and life-table comparisons between transgenic and Indian wild-type Aedes aegypti L.

BACKGROUND OX513A is a genetically engineered strain of Aedes aegypti carrying a repressible, dominantly inherited transgene that confers lethality in immature heterozygous progeny. Released male OX513A adults have proven to be effective for the localised suppression of wild Ae. aegypti, highlighting its potential in vector control. Mating and life-table assessments were used to compare OX513A ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016